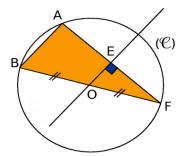
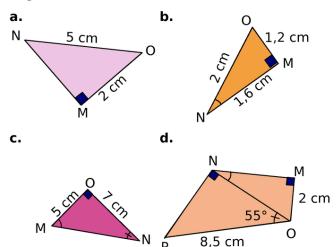

Exercice 1

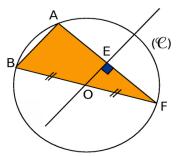

Dans chaque cas, calcule la mesure de l'angle $\widehat{\mbox{MNO}}$; donne la valeur arrondie au degré.

Exercice 2 Sur le schéma ci-dessous :


- (\mathcal{C}) est un cercle de centre O et de diamètre BF = 40 mm ;
- A est un point du cercle ($\mathscr C$) tel que AB = 14 mm ;
- La perpendiculaire à la droite (AF) passant par O coupe le segment [AF] en E.

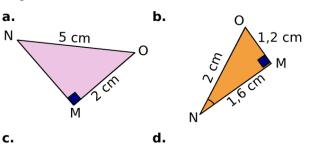
- **a.** Quelle est la nature du triangle ABF ? Justifier la réponse.
- **b.** Calculer la valeur arrondie au dixième de degré de l'angle \widehat{AFB} .
- **c.** Calculer la valeur arrondie au millimètre de la longueur EF.

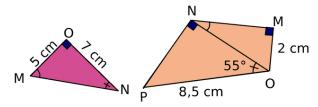
Exercice 1


Dans chaque cas, calcule la mesure de l'angle $\widehat{\text{MNO}}$; donne la valeur arrondie au degré.

Exercice 2

Sur le schéma ci-dessous :

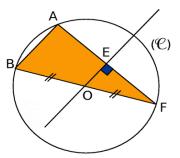

- (*C*) est un cercle de centre O et de diamètre BF = 40 mm ;
- A est un point du cercle ($\mathscr C$) tel que AB = 14 mm ;
- La perpendiculaire à la droite (AF) passant par O coupe le segment [AF] en E.



- **a.** Quelle est la nature du triangle ABF ? Justifier la réponse.
- **b.** Calculer la valeur arrondie au dixième de degré de l'angle \widehat{AFB} .
- **c.** Calculer la valeur arrondie au millimètre de la longueur EF.

Exercice 1

Dans chaque cas, calcule la mesure de l'angle $\widehat{\text{MNO}}$; donne la valeur arrondie au degré.



Exercice 2

Sur le schéma ci-dessous :

- (\mathcal{C}) est un cercle de centre O et de diamètre BF = 40 mm ;
- A est un point du cercle (\mathcal{C}) tel que AB = 14 mm ;
- La perpendiculaire à la droite (AF) passant par O coupe le segment [AF] en E.

- **a.** Quelle est la nature du triangle ABF ? Justifier la réponse.
- **b.** Calculer la valeur arrondie au dixième de degré de l'angle \widehat{AFB} .
- **c.** Calculer la valeur arrondie au millimètre de la longueur EF.