Calculs avant la calculatrice

Terminale Maths complémentaires

Logarithme

Tous les chiffres sont-ils nécessaires? Calculs babyloniens

Faire les multiplications

$$12 \times 8 = 120 \times 80 = 1, 2 \times 8 =$$

$$0,0012 \times 80 = 0,012 \times 0,8 = 1200 \times 0,8 =$$

Tous les chiffres sont-ils nécessaires? Calculs babyloniens

Faire les multiplications

$$12 \times 8 =$$
 $120 \times 80 =$ $1, 2 \times 8 =$ $0,0012 \times 80 =$ $0,012 \times 0,8 =$ $1200 \times 0,8 =$

La numération babylonienne ne permettait pas de faire la différence entre 12, 120, 1,2 ou 1200. Malgré cela, ils pouvaient faire des multiplications.

Tous les chiffres sont-ils nécessaires? Calculs babyloniens

Faire les multiplications

$$12 \times 8 =$$
 $120 \times 80 =$ $1, 2 \times 8 =$ $0,0012 \times 80 =$ $0,012 \times 0,8 =$ $1200 \times 0,8 =$

La numération babylonienne ne permettait pas de faire la différence entre 12, 120, 1,2 ou 1200. Malgré cela, ils pouvaient faire des multiplications.

- Multiplication des deux nombres
- Rectification de la mantisse

Multiplications babyloniennes

On donne

$$13 \times 21 = 252$$

Faire les multiplications suivantes

$$1, 3 \times 2, 1 =$$

$$1300 \times 0, 21 =$$

$$0, 13 \times 2, 1 =$$

$$1300 \times 2100 =$$

Multiplications babyloniennes

On donne

$$13 \times 21 = 252$$

Faire les multiplications suivantes

$$1, 3 \times 2, 1 = 1300 \times 0, 21 =$$

$$0, 13 \times 2, 1 = 1300 \times 2100 =$$

Comment faire les multiplications de base?

Table de Neper Transformer des \times en +

Faire la multiplication $8 \times 32 =$

Table de Neper Transformer des \times en +

Faire la multiplication $8 \times 32 =$

Axe ×	1	2	4	8	16	32	64	128	256
Axe +	0	1	2	3	4	5	6	7	8

Table de Neper Transformer des \times en +

Faire la multiplication $8 \times 32 =$

Axe ×	1	2	4	8	16	32	64	128	256
Axe +	0	1	2	3	4	5	6	7	8

Table du logarithme de base 2

Tables de logarithmes ou table de Nepper

Table du logarithme de base 2

$Axe \times$	1	2	4	8	16	32	64	128	256		
Axe +	0	1	2	3	4	5	6	7	8		

Table du logarithme de base 10

Axe ×	0.001	0.01	0.1	1	10	100	1000	1000
Axe +	-3	-2	-1	0	1	2	3	4

Table du logarithme de base e

Multiplications avec des additions

• Calculs directs

Calculs avec "l'astuce" des babyloniens

$$0,08 \times 0,36 = 0,14 \times 140 = 600 \times 4400 = 16000 \times 0,0014 = 0$$

Les fonctions logarithmes

Propriété

Il existe une famille de fonctions définie sur $\mathbb{R}^{+\ast}$ qui respecte la relation

$$f(a \times b) = f(a) + f(b)$$

Cette famille s'appelle les fonctions logarithmes.

Les fonctions logarithmes

Propriété

Il existe une famille de fonctions définie sur \mathbb{R}^{+*} qui respecte la relation

$$f(a \times b) = f(a) + f(b)$$

Cette famille s'appelle les fonctions logarithmes.

Exemples

- Logarithme de base $10 : \log(x)$ avec $\log(10^x) = x$.
- Logarithme de base $2 : \log_2(x)$ avec $\log_2(2^x) = x$.
- Logarithme de base $e : \ln(x)$ avec $\ln(e^x) = x$.